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THE NOISE FROM TURBULENCE CONVECTED AT HIGH SPEED

By J. E. FFOWCS WILLIAMS
Aerodynamics Division, The National Physical Laboratory, Teddington, Middlesex

(Communicated by M. J. Lighthill, F.R.S.—Received 19 June 1962)
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The theory initiated by Lighthill (1952) for the purpose of estimating the sound radiated from a
turbulent fluid flow is extended to deal with both the transonic and supersonic ranges of eddy
convection speed. The sound is that which would be produced by a distribution of convected
acoustic quadrupoles whose instantaneous strength per unit volume is given by a turbulence stress
tensor, T3;. At low subsonic speeds the radiated intensity increases with the eighth power of
velocity although quadrupole convection augments this basic dependence by a factor |1 — M cos 6|5,
where M is the eddy convection Mach number and 6 the angular position of an observation point
measured from the direction of eddy motion. At supersonic speeds the augmentation factor
becomes singular whenever the eddy approaches the observation pointat sonic velocity, M cos 6 = 1.
At that condition a quadrupole degenerates into its constituent simple sources, for each quadrupole
element moves with the acoustic wave front it generates and cancelling contributions from opposing
sources, so essential in determining quadrupole behaviour, cannot combine but are heard inde-
pendently. This simple-source radiation is likened to a type of eddy Mach wave whose strength
increases with the cube of a typical flow velocity. When quadrupoles approach the observer with
supersonic speed sound is heard in reverse time, but is once again of a quadrupole nature and the
general low-speed result is again applicable. The limiting high-speed form of the convection aug-
mentation factor is |M cos 6| -5 which combines with the basic eighth power velocity law to yield
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:é the result that radiation intensity increases only as the cube of velocity at high supersonic speed.

> > The mathematical theory is developed in some detail and supported by more physical arguments,

O : and the paper is concluded by a section where some relevant experimental evidence is discussed.
A

:,‘_j 8 INTRODUCTION

~w The general theory of sound generated aerodynamically given by Lighthill (1952) has

provided a firm basis for the understanding of sound produced by fluctuating airflows in
the absence of vibrating solids. By evolving an acoustic analogy Lighthill was able to relate
the highly non-linear motion of turbulence to its induced acoustic field with tools already
made familiar by the scientists who in the last century created the science of sound. This
appeal to classical acoustics brought a comforting sense of familiarity into this entirely new
and complicated field and some aspects of sound produced aerodynamically could be
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470 J. E. FFOWGS WILLIAMS

inferred by analogy with earlier acoustic studies so well reported by Lord Rayleigh (1896).
In this analogy the essentially quadrupole nature of aerodynamic noise is of deep signi-
ficance, implying a cancellation mechanism brought about by opposing sources of lower
order, which makes the generation of sound by aerodynamic means an extremely inefficient
process, at least at the lower Mach numbers. These elementary sources are arranged in
equal and opposite pairs separated by a distance small compared with the acoustic wave-
length. A cancellation effect of this type is discussed by Stokes (1868) when accounting for
the diminished efficiency of a bell sounding in a partial vacuum upon the introduction of
hydrogen (owing to the augmented acoustic wavelength). The degree of Stokes’s effect in
that instance was critically dependent on the dipole nature of the bell. Both Rayleigh (1896)
and Lamb (1932) in discussing this work emphasized the dependence of the cancellation
effect on the source order and their arguments apply with redoubled strength in the under-
standing of aerodynamic noise.

Although broadly based on well-established principles, the details of Lighthill’s theory
involved new techniques developed to cope with certain novel aspects of the aerodynamic
noise problem. Turbulence, which is a distributed random function of space and time,
presents quite a different problem from the harmonically fluctuating point sources of early
acoustic theory. The need to relate the quadrupole source strength to details of the turbulence
structure imposed a severe demand on the new theory particularly when the distributed
quadrupoles and the observer were in relative motion. The acoustic analogy developed in
terms of moving reference frames provided a solution to these problems and identified the
radiation field as being that due to an equivalent distribution of moving quadrupoles placed
in a uniform acoustic medium at rest with the quadrupole source strength density equal to a
turbulence stress tensor. In this form Lighthill was able to calculate the acoustic radiation
if given a particular specification of the turbulence structure.

Turbulence structures of most practical airflows are little understood, and involved
calculations of their sound field are prohibited by our severely restricted knowledge of a
complicated turbulence stress tensor. At low speeds, Lighthill (1952) showed that under
certain conditions the fluctuating Reynolds stress of a near-incompressible flow can be used
as a good approximation to the stress tensor and that the small fluctuations of density can be
disregarded without significant error. On this basis Proudman (1952) computed the noise
radiated by decaying isotropic turbulence, but his work is probably the only detailed
quantitative application of aerodynamic noise theory that is feasible with our present
limited understanding of turbulence.

But accurate and involved evaluation of the equations relating sound to its turbulent
origin is only one of many uses of the general theory. Perhaps its most important application
is in predicting gross effects brought about by only qualitatively-understood features of the
complicated turbulent flows found in practice. High-velocity air jets are of particular
importance, accounting as they do for most of the noise of modern aircraft. Here the
qualitative trends predicted by the theory account for many features observed in their noise
fields and allow experiments to be co-ordinated without recourse to empiricism.

The limited understanding of turbulent flows gave developments of theory, that show all
features of the noise field deducible from as general as possible a turbulence specifica-
tion, a particular importance. Lighthill (1954) made use of the relative inefficiency
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THE NOISE FROM TURBULENCE 471

of octupoles to show that a highly directional quadrupole field is produced by shear-flow
turbulence. Dimensional reasoning showed the intensity to vary with the eighth power
of a typical velocity, and similarity principles were used to demonstrate how jet noise
sources are concentrated near the nozzle exit (Ribner 1958). Convection of turbulent
eddies generally augments quadrupole efficiency by a factor (1 — M cos ) -6 (Lighthill 1952),
where M cosf is the convection Mach number in the direction of emission based on the
atmospheric speed of sound. This factor is modified to |1 — M cos 8| =5 (Ffowcs Williams 1960)
to account for a limited source volume, and acoustic frequencies are shifted by a Doppler
factor (1 —Mcosf). These effects are all predicted by making an approximate estimate
of the solution to the exact equations for the radiation field, and, since primary concern
has been with jets of relatively low velocity, the approximations have been of a type valid
at low speeds. These approximate estimates are typified by the most familiar result of
Lighthill’s theory, the dimensional law for acoustic intensity,

p2U8 ( D\? 1

~ ;O_ag (M) |1—Mcosf|5

Iis written for the intensity, p is a typical exhaust gas density, p, the atmospheric density,
a, the atmospheric speed of sound, U a typical flow velocity, D a flow dimension and |y|
the distance travelled by the sound wave. This result, now well substantiated by experiment
(see Lighthill (1954) and (1961) for discussion), although the U®law evidently overestimates
somewhat the intensity at higher subsonic speeds, bears witness to the ability of Lighthill’s
acoustic analogy to yield useful results regarding the noise field of turbulence whose
structure is still little understood.

At supersonic flow velocities the problems are even less understood, and, although extra-
polation of low-speed theory may provide a crude guide, there is little or no justification for
such astep. Indeed the recent work of Phillips (1960) suggests a possible mechanism of sound
generation by supersonic shear layers quite different from that indicated by Lighthill (1952)
at low speeds. Of course the acoustic analogy is none the less valid, being based on
exact equations, but the important question of whether or not it can be usefully exploited
at high speeds still remains unanswered.

Objections to its high-speed application are twofold. First, the turbulence stress tensor is
a complicated enough parameter at low speeds where the turbulence may effectively be
regarded as incompressible; how much more complicated does this become at high speeds
in compressible turbulence? The Lighthill retarded-potential solution then becomes an
extremely involved and intractable integral equation. This point would be entirely valid
were compressible effects on the stress tensor of extreme importance and were turbulence
specifications limited to details of velocity fluctuations. In practice, however, it is an unduly
pessimistic outlook since density changes in the turbulence only become significant at non-
negligible values of the turbulence fluctuation Mach number. In jets where turbulence
levels rarely exceed 20 9%, of the nozzle exit velocity, incompressible turbulence models may
be adequate over a relatively wide speed range. Even when turbulence Mach numbers have
become significant the presence of density in the source function is not necessarily a dis-
advantage. Quantitative turbulence studies are still confined to experiments with hot-wire

anemometers which sense not a velocity but a R eynolds number, which is a non-dimensional
58-2
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density-velocity product! (see, for example, Kovasznay & Toérmack 1950). It may then be
that the presence of density in the stress tensor, far from being an embarrassment, can lead
to direct application of experimental data where other approaches flounder for lack of a
velocity specification. For the present, with our very limited understanding of high Mach
number turbulence the density dependence at high speed can only be of academic interest.
We are most unlikely to have access to details of either velocity or stress tensor in the near
future, and while this state exists the most important developments of theory must be the
ones which yield the most general features of acoustic emission, yet make the minimum
possible demand on turbulence knowledge. Answers to several important questions should
be given by a general theory which regards the turbulence field as specified, and there
appears to be no significant loss of generality if Lighthill’s stress tensor is once again regarded
as the known parameter.

The effect of supersonic eddy convection is not easily predicted and the presence of the
singularities associated with A cosf = 1 in the low-speed equations is sometimes regarded
as a breakdown of the theory, giving rise to the second main objection to a high-speed appli-
cation of Lighthill’s acoustic analogy. That this apparent breakdown exists is confirmation
that at high speeds quite a different mechanism of sound generation takes over and the
situation may then be analogous, in certain respects, with that described by Phillips (1960)
in supersonic shear layers. But even at this apparently singular condition the concept
of moving quadrupoles can provide a clear understanding of the new mechanism. At low
speeds quadrupole acoustic efficiencies are low due to the near-cancellation brought about
by opposing sources of lower order. As the cancellation becomes less complete the radiation
increases rapidly but is always subject to the limiting condition that at no time can the
quadrupole radiate more efficiently than its constituent elementary sources. This condition
would arise if all cancellation ceased. Now when quadrupoles are convected subsonically
towards an observer, in order that sound from each element should reach the observer
simultaneously, the parts nearer the observer emit at a later time. Since the quadrupoles
have moved forward in this time, a distance determined by the convection Mach number,
the time delay is further increased and the reduced cancellation, in accordance with the
Stokes effect and the increased volume occupied by the source, accounts for the low-speed
|1 — M cos@|~® factor in the intensity equation. At the condition when Mcosf = 1, the
quadrupole is being convected towards our observer with precisely the speed of sound. The
near elements of the quadrupole emit and continue to move with the sound wave they
generate. The other quadrupole elements never overtake this wave and are therefore quite
unable to make their presence felt. The cancellation effect is then completely absent with
our observer hearing sound generated by the elementary sources which constitute the
quadrupole. Since simple-source efficiency is higher than that of a quadrupole the acoustic
analogy immediately implies that at supersonic convection speeds relatively intense waves
should be observed at the eddy Mach angle, § = cos™! M~!, an effect now fully sub-
stantiated by experiment (Laufer 1961). At even higher convection velocities time delays
again take effect and the quadrupole features of aerodynamic noise resume their low-speed
significance. At these supersonic speeds frequencies are reversed and cancellation is
increased with increasing Mach number, so making the emission less effective. The
|1 — M cos 0]~ factor again becomes valid and its asymptotic form for high Mach number,
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THE NOISE FROM TURBULENCE 473

M5, counters the basic UBay5 factor in Lighthill’s dimensional analysis to predict the
intensity to vary with U® at high supersonic speeds, again an effect consistent with high-
speed experimental evidence (Chobotov & Powell 1957).

Of course one can no longer appeal with such success to analogous situations in classical
acoustics when applying the acoustic analogy at transonic and supersonic speeds. Early
studies on convection were concerned only with the Doppler principle and such novel
aspects as the one suggested by Lord Rayleigh where an ‘observer would hear a musical
piece in correct time and tune, but backwards’ were the source to approach the observer
with twice the speed of sound. The roar generated by eddies moving supersonically in
rocket motor exhausts is certainly heard ‘backwards’, but is so unmusical that our observer
is quite unable to appreciate this wonder envisaged so beautifully by Lord Rayleigh.
Multiple sources convected at supersonic speed have been studied by Blokhinstev (1946),
and Moretti & Slutsky (1959) have studied convection effects of point sources, but these bear
only a limited similarity to the aerodynamic quadrupoles where the Stokes effect plays such
an important role. Acoustic emission at the singular condition, M cosf = 1, is more
analogous to the Mach waves generated by thin aerofoils at supersonic speeds than to any
aspect of classical acoustics, yet the acoustic analogy is capable of dealing with even this
situation with comparative ease.

The justification of extending Lighthill’s theory to high speed must rest on the conceptual
simplicity of the approach and not on the benefits to be reaped from analogies with well-
understood aspects of earlier studies. This paper deals with the general theory and develops
Lighthill’s low-speed approximations to present a unified approach valid over a wide range
of convection velocity. No account is taken of shock waves which might have important
high-speed effects, and the theory would not be expected to deal with hypersonic flow
velocities. Comparison with experiment confirms that even in the absence of details of the
turbulence stress tensor the theoretical technique developed by Lighthill is capable of
predicting many important features in the noise fields of supersonic flows. This experimental
confirmation more than justifies any restriction imposed by regarding the turbulence stress
tensor as known.

1. THE DENSITY AUTOCORRELATION FUNCTION

The starting point of the analysis is the formula given by Lighthill (1952) for the noise
radiated by a moving eddy structure. From this an expression for the autocorrelation
function of the radiated density field is derived for the case of sound generated by convected
eddies in the wake of a moving aircraft. The density autocorrelation function is chosen as it
provides the basis for calculating both the intensity and spectrum of the radiated field. At
zero time separation the function reduces to the mean square density fluctuation while its
Fourier transform in time gives the sound power spectral density. The simplification of
neglecting small retarded-time differences yields the main Mach number dependence in
a form slightly different from the one given by Lighthill (1952). At high convection Mach
numbers the neglect of retarded-time differences leads to singular regions but their inclusion
leads to the discovery of a régime of flow where the mechanism of sound production is of quite
a different form from the now classical low-speed case. This radiation may be interpreted
as an emission of eddy Mach waves, and the analysis has similar features to Phillips’s (1960)
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work on supersonic shear layers. The most striking difference between this and the
low-speed case is that the Mach-wave emission is quite independent of the temporal develop-
ment of the turbulence which plays such an important réle at low speeds.

Lighthill’s treatment is based on an acoustic analogy. The turbulence stress tensor, 7;;,
determines the strength of the acoustic quadrupoles required to produce in a perfect
medium at rest the same sound field as is produced in the real atmosphere by the distributed
random turbulence with its associated refractive régimes and other flow inhomogeneities.
Provided the stress tensor is known, the sound field can be derived very simply.

The far-field moving-axis equations are applicable provided the turbulence is confined
to a limited volume within an otherwise infinite homogeneous acoustic medium where no
solid surface or matter sources exist. The theory does not deal with the hypersonic régime

of flow nor with the effects of shock waves.

turbulence generates sound at y in fixed axes
or v in moving axes at time ¢— |x—y|/a,

2=

sound travelling
from y to x

/ Nix-yl-a,Nt

0, Yy
/]

(x-y) X

sound reaches observer at x at time ¢

Ficure 1. Diagram of co-ordinate systems showing the relation between y and v at the instant when
sound arriving at the observer at time ¢ was generated. y = n—ay N¢+N|x—y|.

The turbulence will be regarded as specified in a reference frame which moves with the
aircraft and this will be the v system of co-ordinates. At a constant value ofy the turbulence
is then a statistically stationary function of time.

Consider the aircraft to move with a constant velocity —a, N, g, being the speed of sound
in the uniform atmosphere where the aircraft causes the only inhomogeneity. The sound
heard at a point (X, f) was emitted at y at the retarded time ¢— |X—y| a5’ !. The origin in »
moves with the aircraft such that at time ¢ = 0 the n and y axes coincide.

y = n—a, Nt is the relation between the co-ordinate systems when both specify the same
point. At the times when the sound reaching our observer was generated the y and n
co-ordinates were related by the equation

y =n—ayNt+N|x—y]|. (1-1)

This system is illustrated in figure 1.
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THE NOISE FROM TURBULENCE 475
Lighthill’s formula for the density fluctuation, (p—p,), can be written

(x—y) (x,—y;) Ty
{p—po} (X,8) ~ dmat) (x—y[+N.(x—y)P o

J (n,7y) dn, (1-2)

where the integral must be evaluated over all space at the retarded time:

7, = t—|xX—Y|/a,.

This formula is taken as the basis of the present theory.
The mean density product with time delay 7*, or the density autocorrelation function,
B(x,t,7*) is now formed from the above equation:

{P”‘Po} (X9 t) {P—‘Po} (X’t+7*) = (X’t T*)

_ f f (*:—y:) (%,—9;) (x,—2) (%—2)
167’2“8 {Ix—y|+N.( x— Y)}3{|X z| +N. (x—z)}P

0
% T ga TuGr) dnds. (13)

Here g and z have a similar significance to n and y and the retarded time

Although in general this mean product only exists in the ensemble sense since the passage
of the aircraft causes the noise to vary with time, we can nevertheless employ time-averaging
techniques. This is made possible by the specification of the turbulence in the  and  space
where it is a stationary function of time and by invoking the ergodic hypothesis. We can
choose for simplicity to average over a range of 7,. This averaging process can be used to
reduce all the time dependence to a function of the time difference, 7,

Jd _a
The required average is then
.1 [T 92 02
lim g [ S Tynm). g TG rytr) dn
1 92 d oT;
= ;1_13; 2T012f oy {07 Tj(n, 1) . T, (5,714‘7)} zl]( 3T - 0 My (& 1y +7)dry. (1°5)
The first term in the above average integrates d1rectly and can make no contribution. Now
0

kl(gs Ty +7) = kl(g’ 7+7), (1-6)

a relation that allows us to rewrite the average in the form

tim—L (7 91 - a
2T o _r 01, 5 71) T8 7y +7) dry. (1-7)

T—>w

On repeating the operation this becomes

1 04 T
lim 7. f Ty (n, 7)) Ta(& 7, +7) dry. (1-8)
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476 J. E. FFOWCS WILLIAMS
Since this average is independent of 7, we can write
). DT ) — Lo RE (0,5 7), (19)
74 072 ot

where R, (n,§,7) is the stress-tensor correlation function.

sz;kl ,8,7) = Tij(”la 71) Ty(8, 71+ 7).
For convenience we now introduce the separation vector A:
E=n+A, dE=dA.
By defining the correlation function
Rijkl(n’A’ T) = Ri?kz("),g, T)s (1-10)

the density autocorrelation function, B(X, #, 7*), can be written in terms of the independent
variables X, #,m and A:

* 1 (xi—:) (% —15) (% —2) (x,—2) o
057%)~ g || eyl Ry x—a 4. e o s 07 i

where the integrals are to be evaluated over all space with repeated suffices summed over
1, 2 and 3 at the correct retarded-time difference given by

[x—y|~[x—2|

T="Ty—T, =T%+
ay

(1-12)

In jet flows turbulent eddies grow as they move away from the nozzle exit and decay as
they leave the mixing region. Their net motion is usually in the opposite direction to the
aircraft but may vary from point to point. As eddies only exist over a small region in space
non-zero values of the correlation function are confined to small separations of y and z.
We can then neglect the small variations of (x—y) and (X —z) over the correlation range
and limit the approach to large values of (x —y), or the acoustic far field. In thisfar field the
difference {|x—y|—|x—z|} can be written, §.(Xx—y)/|X—y|, where 8§ is the separation
vector (z—Yy). The correct retarded time can then be regarded as a function of A, the
separation variable in the correlation tensor:

8§ =A—q,N7=2-Y,
|x—y|—|x—z| — +8' (x—y) _ a,*|X—y|+A. (x—y) .
a a, [x—y| ay(|x—y[+N.(x—y))

Although the important effects of convection can be isolated mathematically by a further
transformation of variables, and this will be done at a later stage, some aspects of the problem
are more simply understood if these effects are first demonstrated by more physical argu-
ments. These arguments centre on an approximate estimate of an exact equation for the
mean square density, B(X,Z,0), but it is essential in attempting the estimate that the
quadrupole nature of the phenomenon and the relevant Stokes effect be taken into proper
account. The effect of eddy convection on the acoustic intensity will be developed here, very
briefly, by considering some general properties of a typical turbulence correlation function.
This technique, outlined by Lighthill (1961), is included here to demonstrate qualitatively

T=T1%4 (1-13)


http://rsta.royalsocietypublishing.org/

=

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE NOISE FROM TURBULENCE 477

the major effects of convection and to serve as an introduction to the more general and

rigorous approach that follows. It will be found convenient to rewrite equation (1-11) in
the modified form

B(x,t,0) ~ 1 ff - Ll

1672af) ) |x—y|?{1+ Ncos ¢}° dr*

This equation is to be evaluated with 7 = A, a5(1+ Ncos¢)~1, where |x—y| Ncos ¢ has
been written for the scalar product N. (x —y). This suffix, x, implies the component in the
direction of emission and A(n,A,,7) represents the integral of the correlation tensor,
R,..(n,A,7) (no summation is implied here), over the surface A. (x—y) = A,|x—y|. Since
this is an instantaneous integral it cannot be affected by eddy convection and is therefore
free of convection Mach number effects.

Now A(n,A,,7) is a typical space time correlation function with a maximum along some
convection velocity line, A, = U, 7. U, is the eddy convection velocity which in this case is
best written as ay{N cos ¢ + M cos 6} since most generally eddies move downstream relative
to the observer with a velocity a, M, say, and the velocity in the oblique direction of emission
is its resolved component, a, M cosf. Relative to the aircraft, where this correlation is
defined, the convection velocity is increased by the component of aircraft velocity in the
direction of emission, a, Ncos¢@, to the value a,{Ncos¢+Mcosf}. Figure 2 shows three
typical constant correlation contours of the function A(y,A,,7) which might be found in
convected turbulence. These three diagrams correspond to:

A(n, A, 7)dA, dy. (1-14)

(1) subsonic eddy convection towards observer (M cosf < 1);
(2) sonic eddy convection towards observer (M cosf = 1);
(3) supersonic eddy convection towards observer (M cosf > 1).

The first and third cases are very similar in that integration along the retarded time line,
7 =A,a5'(1+ Ncos ¢)~1, effectively increases the space scale by a factor

|14 Ncosg| |1 —Mcosf|!

and the time range over which the eddy emits by a factor |1 — A cos #|~!. These increased
ranges reduce the cancellation and so enhance the radiation according to the Stokes effect,
but it is extremely difficult to deduce the degree of enhancement by simple observation.
This difficulty is entirely due to the essentially complicated structure of the quadrupole
source and our inability to visualize effectively the mechanism of reduced cancellation.
That the now familiar Lighthill factor is present is readily demonstrated by an easy though
somewhat tedious computation of the integral for a correlation function of a type consistent
with quadrupole sources. To be consistent the correlation must vanish together with its
first three derivatives at large separations in either space or time, have a non-vanishing
instantaneous integral, if higher-order sources are not to becomesignificant (Lighthill 1952),
and must demonstrate convective features. A suitable form would be

p7

ort
where [ and o are a typical turbulence length and frequency respectively. This function
integrates over A, at the retarded time, A,ay*(1+ Ncos @)1, to give

A(%,0,0) |1+ Ncos¢|>12 /mlw*{(1 — M cos )2+ Pw?/aZ} b (1-16)

4
AMn,A,7) = (—%ZA(n, 0,0) exp —{I"2(A,—[Ncos¢+Mcos0]ay7)2+02?}, (1-15)

59 VoL. 255, A.
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When (1—Mcos)? > l?w%a;?, a condition usually found in practice (see §5), the con-
vective effects introduce a factor |1+ Ncosg|™! |1 —Mcosf|=5 into the equation for
B(x,1,0) and we shall show at a later stage that this is a perfectly general result.

(1) Mcost <1 Ay 1 =A(1+Ncos¢)lag?
- = retarded time integration
lag'(1— M cos )71 ————]_ path
] A, = ay(Ncosd+ Mcosb) r
[(14+ N cos @) (1—M cos )1 ———= 7 = convection velocity line

A(n, A,, 7) = constant

A (1+Ncos ¢)7 a5
convection velocity line
retarded time integration
path

= (ap/w) (1+ N cos ¢)

(2) Mcosf =1 Bz T

lag1(1+ N cos @)1 j
!

A(n, A,, 7) = constant

[

Y

A ay(N cos ¢+ Mcos 0) T

= convection velocity line

7 =A,(14+Ncos @) 1g?
= retarded time integration
path

{(1+ N cos ¢) (M cos 0—1)!

x

(3) Mcosf > 1

A(n, A,, 7) = constant
lag*(M cos 6 —1)-1

Ficure 2. Three typical constant correlation curves of the function A(n, A,, 7) showing convection
velocity lines, integration paths at retarded time and the more important scale changes brought
about by convection.

Approximate low-speed theory predicts a singular result when A cosf = 1, but this
particular correlation function shows the peak value to be

|14+ Ncos¢|512,/n(a}/l*w) A(n, 0, 0). (1-17)

But it is quite unnecessary to rely on examples for the finite value since this condition is
the one instance when approximate methods can give accurate results. This is due to the
fact that the eddy is approaching our observer at precisely the speed of sound which, as we
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have alreadyseen, is no longer a case of classical quadrupole emission where the Stokes effect
accounts for important trends which may be far from obvious. The observer now hears the
sound of the elementary simple sources which constitute the quadrupole, and we are no
longer in any difficulty when trying to estimate the magnitude of the radiation. This
situation is illustrated in the second diagram of figure 2. The time scale is evidently
lag' (14 Ncos¢)~! and the integration scale is ay0~! |1+ N cos ¢|. Together these allow the
correlation integral to be estimated very simply as

ag(1+ Ncosgp)*
14

4
[ A, 8,7) A&, ~ Aln, 0,0) |11 Neosy
5
~[1+NCOS¢I5%A(11,O,O). (1-18)

Typically A(n, 0,0) is T2V/l, where T2 is the mean square fluctuation of the stress tensor,

T;, and V is the correlation volume. The acoustic power generated by unit volume of
turbulence which is proportional, symbolically, to
d a3
—B(x,t,0) |x—y|2-2, 1-19
o B, 1,0) [x—y 22 (1-19)

is readily derived.
At the condition M cos @ == 1 this is very simply

1 R4
|1+ Ncosg| pyl®’

(1-20)

which differs slightly from the value given by Lighthill (1961) who did not consider the
influence of convection on the effective length in the cross-stream direction.

More generally, at both subsonic and supersonic speeds, when (1 — M cosf)? > [2w%a; 2,
the energy generated per unit volume is the more familiar quantity

1 1 T2V

[14+Ncosg| |1 —Mcosb|® pyad (1-21)

These are two important results which can be derived directly from equation (1-11),
but only in the case Mcosf = 1 is the procedure straightforward. The main difficulty
stems from the various subtleties associated with the quadrupole source function and these
difficulties are not entirely conceptual. Although equation (1-11) is perfectly valid, it
suffers the disadvantage of being very sensitive to small errors. Any approximation at that
stage, either theoretical or arising from the substitution of experimental data, could lead to
very misleading conclusions. The reason for this extreme sensitivity is that in a convected
eddy structure the time derivative of the correlation tensor can be written approximately as
the convection velocity times the space derivative. Such space derivatives, which may be
very large, make no contribution to the integral. The computation of the radiated sound
field on the basis of equation (1-11) would then be extremely difficult as only the very small
fraction of the integrand which does not integrate to zero produces sound. Great care must
be taken that this small part is not discarded in approximations that appear valid when
compared to the size of the stress tensor but may be quite unacceptable when compared to

the smaller noise-producing elements.
592
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In fact the equation as formed in (1-11) is not at all suited to convected fields in view of the
large part of the integrand which makes no contribution to the integral. This difficulty can
be overcome by performing another variable change which can also be used to illustrate the
effect of eddy convection. This transformation involves the definition of a separation vector
A whose origin moves with the turbulent eddy

A =A+a,(M+N)7, (1-22)

where M is the eddy convection Mach-number vector relative to Xx. We now define a moving
axis correlation tensor Fj;;,(n,,7) and specify retarded time in terms of A:

By, A, 7) = Ry, A, 1), (1-23)

A x—y) e r|x—y|  or (%9,
a{x=y|-M.(x=y)}" 9, af|x—y|-M.(x-y)}’
The time derivatives of F;;,(n,2,7) and R;;;,(n, A, 7) are not very simply related in view of
the dependence of 7 on other variables. For completeness these relations are developed here:

(1-24)

9 d A, @
'a_,,".Rijkl(naAs T) = :g;”i"ga:;;t‘_ —3—71,,} R’J’kl(n))‘ﬂ T)
9 9
= {57 2oy + ) 31} Bl 7). (1-25)

The suffix, n, signifies the component in the z direction and repeated suffices are to be
summed over 1, 2 and 3.
As 7 must be regarded as a function of A when evaluating the integral of (1-11), care must
be exercised in the partial differentiations required in (1:25):
d dr 9
E/Tn})ijkl(n’)"T ¢7‘) {3/1 +3/1 ar }B‘jki(”b"; 7)

‘7 (%2 —¥,) 2
{ ao{|x yT— M. (x— y)}ﬁr} B, 2, 7). (1-26)

The relation between the time derivatives follows from (1-25) and (1-26):

d - Mx—y[+N.x-y)79 J } B _
57 Bans87) = (| 2N ey ) gy~ MaH ) ) Bl = ). (127)
The second term on the right-hand side of this equation, when inserted into the integrand
of (1-11) can make no contribution to the integral over correlation volume. This is easily
shown by completing the divergence to form a surface integral at large values of separation
where the correlation function must be zero.
Positive volume elements are related by the Jacobian
||x—y|+N.(x—y)
1-28
x—y|—M. (x—y)/’ (1-28)
By making use of these relations the density autocorrelation function can be written in a
much more useful form:

dA = da

1 (x—9) (% —9) (%e—5) (%—9) o
B t7%) ~ g | | oy TRty T3] —M. (=) g st o)
(1-29)
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This is to be evaluated with ;% T*|X—y|+A. (X—Y)
 a{x—y|-M.(x—y)}’

This equation for the acoustic radiation from convected turbulence in the wake of an
aircraft in flight will be used to examine in more detail the acoustic efficiency at both high
and low speeds. It is more revealing than the preceding equation, (1-11), on two main
points.

First, contributions to the integrand from convected patterns, which generate no sound
at subsonic speeds, have been minimized, allowing a realistic estimate of the acoustic
strength to be obtained from the magnitude of the covariance F;,(n,A, 7). Errors involved
in approximations at this stage have also been substantially reduced by emphasizing that
small part of the turbulence which generates sound.

Secondly, and this is perhaps the more significant point, the main dependence of the
radiation on convection is shown quite clearly in the | |x—y| —M. (x —y)|°factor. The time
scale of the correlation tensor Fj,;(n,A,7) has been maximized by the co-ordinate trans-
formation and small variations in 7 can have very little effect on the value of the correlation
tensor. This tensor is then fairly insensitive to convection velocity changes and the main
effect of convection is immediately apparent. Of course this is not true for large variations
in retarded time such as occur near the point |[x—y| = M. (x—Y), and it is a fact that
retarded-time differences in the moving co-ordinate system are generally larger than those
in a fixed frame for equal space separations, but this does not alter the important result that
for small separations retarded time can be disregarded. This step has proved invaluable in
understanding the strong preference for downstream emission and the complicated influence
of retarded time in equation (1-11) is very simply accounted for by the Mach number
factors of equation (1-29).

Now (x—Yy) is a function of n defined by equation (1-1). This can be transformed to give
(x—y) explicitly in terms of the independent variables and the equations become very
reminiscent of the well-known solution to the convected wave equation:

(x=3) = (== N0+

X [N (x =1+, NO)F {IN. (x—n +a,NO -+ (1~ [N|?) [x—n+ 2, Ne[2}], (1-30)
[x—y|+N. (x=y) = £ HN. (X—0+4,Nt)]?+ (1—|N|?) [x—n 42, N¢[3. (1:31)
The significance of the two roots in these equations is that sound reaching an observer at
any one instant was emitted by the aircraft at two different positions. The coefficient of N in
the second term on the right-hand side of equation (1-30) is equal to — |x—y| which must
always be negative. Only one root exists which satisfies this condition at subsonic aircraft
speeds, |N| < 1, but at higher speeds sound reaching an observer inside the Mach cone at
one instant comprises two rays of sound emitted from the same position relative to the
aircraft but at different times and different points, y, and y,, say. The positions at which the
aircraft emits sound to reach the observer at the instant considered are easily calculated
with the formula (1-30).
The integration over v involves a change in the value of y, but as » is restricted to a small
range by the limited source volume, so is y in most cases and (x—y) can be treated as
constant. This however is not permissible at all times since even small changes in y
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sometimes require very large changesin y and under those conditions the variation of (x—Yy)
throughout the volume of integration would have to be considered. Ify is to vary over a
small range L, then y will have to vary over a range L dy/dn, and the fractional change in y

can be written as Ay N I ?X,\, I Ix—y| B (132)
x—y| [|x—y|dm [x—y[{{x—y[+N.(x—y)}

The value of (x—Yy) remains relatively unchanged provided the ratio

L{lx—y|+N.(x-y)}"!
remains small. This is usually the case in the far field at large |[x —y|. But when |[N| > 1 the
length {|x—y|-+N.(x—y)} can become zero, implying an infinite change in y for a
fractional change in n. Under these conditions (x—y) must be treated as a variable for
7 integration.

In most practical applications of the theory (excluding the surface of the aircraft Mach
cone) changes in (x —Yy) can be discounted and the density autocorrelation function is given
by equation (1-29) evaluated at constant (X —Y).

Although the choice of M is based on the velocity of the reference frame in which the
turbulence has its maximum time scale, the analysis is perfectly valid for any value of M.
This point is important as it implies that if a reference frame exists in which the turbulence
does not change, so that time derivatives vanish, the integral is identically zero. This is a
proof of the well-known fact that a pattern of turbulence which is convected at a uniform
velocity without distortion of its spatial properties will radiate no sound.

From a casual glance at equation (1-29) it appears that this is true over the entire speed
range—but this is not so. At supersonic convection velocities the integrand can become
singular as {|x —y| —M. (x—y)} approaches zero. Here the zero of the correlation function
time derivative associated with an unchanging pattern divided by the zero causing the
singularity can have a finite value. Indeed it has, and the radiation emitted takes the form
of eddy Mach waves which are analogous to the Mach waves generated by thin supersonic
aerofoils. This is the mathematical analogue to the fundamental change of mechanism
brought about when the quadrupole source approaches the observer with exactly sonic
velocity. The Mach waves are the simple-source-like emission which has been predicted by
the preceding physical arguments.

Turbulence moving at supersonic speeds generates an array of Mach waves whose
strength is little dependent on the temporal development of turbulence as it moves down-
stream. This is in vivid contrast to the quadrupole emission where the temporal development
is probably the most important single factor determining acoustic efficiency.

A more detailed study of the Mach wave emission is discussed below and this corresponds
in part to the situation treated by Phillips (1960).

9. THE SINGULARITIES OF THE AUTOCORRELATION EQUATION
The equation governing the density autocorrelation as written in (1-29) requires speci-
alized treatment whenever apparent singularities arise. One such situation occurs when
the aircraft is flying at supersonic speeds and the relative position of the observer to the
aircraft is such that he lies on the aircraft Mach cone:

|[x—y|+N.(x-y)|=0. (2:1)
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Here the integrand of equation (1-29) becomes infinite and the dependence of (X —Yy) on
n has to be considered. Itis easily shown that the integral overn remains finite by expanding
the integrand about the singularity, but it is doubtful whether this condition can ever have
any practical significance. At this singular point the observer hearing the sound is on the
edge of the Mach cone which is close to the shock cone generated by the aircraft’s motion.
The pressure difference caused by the passage of this shock wave must be so large as to make
the Mach wave due to the noise completely insignificant. In view of this we shall confine
discussion of this particular singularity to noting that the integral remains finite and that it is
not a case of great practical importance. We can then limit our attention to regions away
from this singularity where, as was pointed out in the previous section, changesin (X —y) can
safely be ignored over the integration range ofn at both supersonic and subsonic speeds. At
supersonic speeds, however, each point in the jet contributes to the sound heard at any
instant twice, and the variation of (x —y) between the two times of emission must be con-
sidered. This is very easily done by choosing the two roots of equation (1-30).

The second and most important singularity occurs at supersonic eddy convection speeds
when the observer is on the Mach cone generated by the moving eddies,

|[x—y|—M.(x—y)| = 0. (2-2)

This is a case of considerably more interest and can occur at all aircraft speeds. It will be
shown that the integrand remains finite at this condition because the correlation function
is zero. Physically this is of interest as it corresponds to an emission of what have been
termed ‘eddy Mach waves’. In this approach to the theory of sound production the
equations only indicate this phenomenon specifically at the singularity, although, since the
frame of reference could be chosen arbitrarily, Mach wave emission could be demonstrated
over a range of supersonic convection speeds. Such a procedure would be more analogous
to the analysis developed by Phillips (1960). In this approach the theory deals with both the
quadrupole and Mach wave emission as being essentially the same phenomenon, the Mach
wave case being merely a simple-source emission by quadrupoles approaching the observer
at the speed of sound.

The behaviour of the autocorrelation equation in this region can be examined by con-
sidering the integral of the correlation tensor

04
J‘FEjkl(n’)"T) d)‘> (2.3)

it being remembered that the retarded time-difference, 7, must play an important part.
Defining the four-dimensional Fourier transform of the correlation tensor as the power
spectral density tensor

Pyu(n,r,0) = [ [ Hyyln, k,0) €07 e dke do, (2:4)
and noting that differentiation is equivalent to a frequency weighting
. 1 ar o
(10)" Hig(n,%,0) = 1505 [ [ 5 Pawn 2 0) e k2 dn o, (2:5)

while the retarded-time difference is a dependent variable

;G [X=y|T* A, (X—y)
a{[x—y|—M.(x-y)}’

(2°6)
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we can write the volume integral, (2-3), in terms of the cross power spectral density tensor
fIz‘jkl (71: k: “)) :

94
or 4}2]/:1("!:7* 7)da

= o [0 Ho o 15PN Gy ) P ey o ) 4 )

The time scale of F;;,(n,2, ¢) is large (this was the object of introducing the A variable),
and consequently non-zero values of H;;;,(n, K, ») are confined to small values of frequency.
Away from the singular point the wave-number vector

—0(X—y)
a{x—y[-M.(x—y)}
is always confined to small values by this restriction on the range of frequency, v, and must
have a value close to zero. As a low-speed approximation we can treat the wave-number
vector as zero to obtain Lighthill’s approximation for low Mach number which neglects
small differences in retarded time:

fa 2 D (0,0, 7) da ~ (2m)3 f“’ Hukl(”bo w exp{{l __yllx M?II(T; y)}}

g4 ™ |x—y

~ or 4B]kl ("]: ) {‘X YI I ()I{ y)}) (2'8)

Were the power at zero wave number very small, the presence of important octupole

fields would be implied by the near-vanishing of the instantaneous volume integral. When

a significant quadrupole strength density is present there will always be finite power at zero

wave number and the suggested low-speed approximation will be valid provided the wave-
number vector

0(x—y)
ag{[x—y|—M. (x—y)}
is small. But this may not be true at the higher values of /a,. The restrictions on this approxi-
mation were fully discussed by Lighthill (1954) in his second paper.
At higher Mach numbers the situation is quite different, particularly in the regions of
the singularities, and this can be illustrated by a further variable change.
The new frequency variable « will be introduced and defined by the relation

a)|x —y|
X — X—
{l YI M.(x-y)} (2:9)
do = |IX y| =M. (x—y) de for positive elements.
|x— YI
Equation (2-7) is then
94
[ 57 Putn,2, ) dn
f|X—V|= ( —a(x—y) of|x—y|—M.(x— y)})
Sk 1 g x—y] = e

(2-10)
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Near the singularity the frequency is confined to zero and the right-hand side becomes
equal to
3Hx“Y|“‘M-(X'—Y)5f 4 ( —a(X—y) ) iar® .
(2m) | X—y] at Hyp |, W x—y|’ el** da. (2-11)

On replacing the main factor in the integrand by its Fourier transform
at —a(X—y) 1 04 ie(X—y).A )
a Hy (”b 4| x—y|’ 0) = (277)4f e, Pjy(n,2, 0) exp {m; doda, (2:12)

where d/dA,_,, denotes differentiation with respect to the component of A in the direction of
emission, (X—Yy), equation (2-11) can be simplified to

a4
[ 373Patn,,7) da
_|Ix=y|-M ” (x Y)} :
r= i M U = UL

The volume integral over A can now be reduced to a surface integral by integrating in the
direction of (x —y) giving

d _|x=y[-M.(x-y)P
Jg;zpijkz(mlﬂ)dl x— Y|

where dA, is an area element in a plane normal to the direction of Mach wave emission and
defined by the condition

ff 3/1( - Py, 0)doda,, (2:14)

a7 |X—y|+ (X—y).A, = 0. (2-15)

The acoustic radiation in the region of the singularity can then be deduced from the
formula obtained by combining equations (2-14) and (1-29)

4
f f f %—9) (% —9,) (%—yx) (x—y) 9 Pyu(n,A,, 0) doda, dn.

B(x, ¢
(X, t,7%) ||x y|+N x—y)| [x—y[ i, 219

~1 67r2a3

This equation dealing with a Mach wave emission has quite a different form from the
usual one applied to low-speed flows and does not involve the apparent infinity at points

satisfying the condition
{x—y|-M.(x-y)} =

It is an exact equation at this singularity giving, for the first time, a direct value to the
height of the peak in the directional distribution so clearly indicated by the infinity in the
low-speed analysis. Itis interesting to note that, in accordance with the concept of sonically-
convected quadrupoles reducing to simple sources, the retarded-time differences play no
part at all in this equation, but perhaps the most interesting feature is its dependence on the
turbulence time scale. At low speeds this is one of the most important factors determining
acoustic efficiency as the intensity is proportional to the fourth power of frequency.
Phillips (1960), however, found quite a different frequency dependence and showed that
the Mach wave intensity was directly proportional to the turbulence time scale or eddy life-
time. This direct proportionality is again predicted both here and by Lighthill (1961) and
will result in replacing the famous U® law by U3 around the regions of peak emission.

6o Vor. 255. A.
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3. INTENSITY AND FREQUENCY ANALYSIS OF THE SOUND FIELD

Both the acoustic intensity and frequency spectrum can be obtained from the density
autocorrelation function. The intensity I(X, £) is given by

I(x,t) = a} p5 ' B(%,1,0), (8-1)
and the power spectral density of the sound field W(x,¢,7) by

3
W(x, 4,9) = 205" f B(x, #,7%) e~ dr*, (3-2)

For simplicity we can let the observer be at the origin of co-ordinates, i.e. X = (0, 0, 0)
and write

M. (x—y) = |x—y| Mcos¥, (3-3)

and N.(x—y) = |[x—y| Ncosg. ‘ (3-4)

At Mach numbers outside the range (1—AM cosf) ~ 0 (and the extent of this range is
illustrated by the example of § 5) the approximate form given by Lighthill, where retarded-
time differences are neglected in the moving frame, is most revealing. The intensity can then
be written in a form which illustrates both the effect of aircraft motion and eddy convection

1 Y:Yi Y1 Yy gt ,
x4~ 16712p0a8ff [¥[6]1+ Ncosg| |1 —Mcos @] ar* Fiuln,2, 0) dd,dn. (3-5)

At supersonic values of eddy convection Mach numbers the peak intensity will be around
the angle cos @ = M~1, where the above approximate result is singular. The intensity is then
given the non-singular equation

1 YiYi Y% 9 .
I(X’ t)(l—Mc0s0)=0 16ﬂ2ﬂ0 Jffs Iylﬁ !l -|—NCOS¢I all(x_y)P'kl(n’)‘s’ U) de dxs d’l]. (3 6)

In both cases the main effect of aircraft motion is contained in the |14 Ncosg| factor,
although velocity changes do affect the value of the correlation tensor Py, (n,2, 7).

The frequency spectra of the radiation field in both these régimes are of interest, and
especially the components of turbulent motion which generate particular frequencies of
sound.

The power spectral density can be written by combining equations (3-2), (2-7) and (1-29)

1 YiY%iYe Y@
W(x,t,y) ~ 4p0agfff |y|¢ |1+ Ncosg||1—Mcosf|®

X—y) (1—Mcosf)? .
X Hyy {”l, o y¢)10(|x—y] ) , w} exp{—rr* (7_*_(1___1‘14"_0&?5)} dr* dw dn
( ) (37)
~ Y Ye YVt Y X=y) } '
gpoagf [y[6 |1+ Ncosg] ukz{’) 4 |x—y|’ y(1—Mcos @) dy. (3-8)

An interesting observation can be made at this stage regarding the components of the
turbulence which generate particular parts of the sound field. The analysis presented here is
perfectly valid for any value of the frame Mach number M, and it may beseen that the wave-
number vector of the sound is precisely the same as the wave number of the turbulence which
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generated it. On the other hand, the frequency in the turbulence must be scaled by the
Doppler factor (1 — M cos ) to give the frequency of the emitted sound wave.

This point can be illustrated by examining a typical power spectral density function
which might be observed in convected turbulence. Of course such functions have never
been measured experimentally and one can only assume a likely form. Consider for the
moment a fixed-frame analysis applied to convected turbulence. M and N are both put to
zero. A power spectral density can be defined as a function of the wave-number component
in the direction of emission, k,, and turbulence frequency, w. The other two wave-number
components are assumed zero to give the turbulence spectral function directly responsible
for radiation in the chosen direction. The main power will be associated with velocity
—U,cos @ as turbulence frequencies are mainly due to wave-number convection. Here U,
is the eddy convection velocity and 6, the emission angle, is assumed to be small. Figure 3
illustrates this situation for an idealized case.

o = fixed axis turbulence
stress tensor frequency
slope of sound generating
line = —a,

slope of maximum power
line = convection velocity
=—U,cos @

~ ks = wave number

N constant power contours

Ficure 3. Sketch of a typical cross-section of the four-dimensional power function, H;,(n, k, v),
showing the sound-producing elements. (FIXED AXEs.)

From this illustration it is clear that the wave numbers which can make a contribution to
the radiation field are much smaller than the typical dominant wave number of the turbu-
lence. It has been shown in §2 that the neglect of retarded-time differences restricts the
analysis to zero wave number. Clearly such a step will not be justified in the fixed axes unless
the power along the line defined by the sonic velocity, —a,, is approximately equal to that on
the frequency axis.

In a moving axis analysis where the time scales are maximized the main power is con-
centrated around the zero frequency line. In this case the sound is only generated by the
components lying on the line defined by the velocity —a,(1—AM cosf). The moving-axis
sketch of figure 4 shows that the power on the line responsible for sound production is
approximately equal to the power at zero wave number. That is only so if the factor
(1—M cos ) is not close to zero. Here then, retarded-time differences may be negligible and
Lighthill’s low-speed approximation fully justified.

If these sketches are typical of the power distribution in convected turbulence, they
demonstrate how only the low wave-number components of the turbulence stress tensor

60-2
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generate sound. The high wave numbers could make a contribution if the moving-axis
frequencies were sufficiently high as to allow significant power to fall on the velocity line
responsible for radiation. As the singularity is approached, (1— A cosf) — 0, the velocity
line becomes coincident with the wave-number axis and then all wave numbers contribute.

It is important to notice that the zero wave-number component of 7}; cannot radiate
sound. Now in the low-speed approximation where retarded-time differences are neglected
the analysisis restricted to zero wave number, for instantaneous volume integrals of non-zero
components vanish. The acoustic power spectral density is then given by the approximate
form

L Y:YiYr ¥
W(x, t,7) ~ f j SH.. (1,0, —y(1—Mcos0)) dn. 3-9
(x,2,7) 20,3 [y[F|1+Ncosg)]| Y H i, 0, —¥( )) dn (39)
@ = moving axis frequency
slope of line constant power
defining the sound contours

producing elements
= —ay(1— M cos 0)

P ———— —
Cee—"_——>>

Ficure 4. Sketch of a typical cross-section of the four-dimensional power function, H;;;,(n, k, w),
showing the sound-producing elements. (MoOVING AXES.)

It is very important to note the significance of this result. It does not imply that all
frequencies in the sound field are generated by turbulence at zero wave number—indeed
such turbulence radiates no sound. The result is essentially an approximation which may be
useful in estimating magnitude. Its meaning is that the power in 7}; at the desired wave
number of y(x —y)/a, |[x—y|, which is assumed small, is approximately equal to the power
at k = 0. This is because a Fourier integral of a function with small wave number approxi-
mates to the volume integral of the function over all space, leading to Lighthill’s eddy
volume formulation (Lighthill 1954). Such an approximation has obvious limitations when
it is used as a basis of further analysis as the step focuses attention on parts of the turbulence
which cannot produce sound.

It should be noticed that power at a given frequency and zero wave number is completely
independent of the frame of reference. This suggests the possibility of providing data from
filtered observations, but the filter must be set at the Doppler-shifted frequency although the
experiments might be performed in the same reference frame as the observer. Application
of a differentiating circuit on to a stationary probe is also admissible in this case although
care should be taken to ensure that the measured signal is not predominantly of a type that
contributes nothing to the integral.

At the singularity where the emission of sound is much more of a Mach wave phenomenon
the situation is again quite different. The radiation spectrum can be calculated from
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equations (3-2), (2-11) and (1-29) or more simply by inserting the singular conditions in
equation (3-8):

W(x,t,y)

71 Y y(x—y
(1-Mcos)=0 " 20, agf ly|6 lyiﬁj_y]c'yclos ¢| 7’4Hz‘jkz( ) ao(—lx':s,ll ) 0) dyn, (3'10)
showing again that the wave number in the turbulence and the sound produced are identical.
But in this case the zero-frequency components generate the sound (these are integrals of
correlations with respect to time which can be expressed in terms of a sort of eddy persistence
time)—contrasting vividly with the régime discussed above but again analogous with the
high-speed case examined by Phillips (1960).

Mach wave emission of this type is expected to correspond to the directional peaks where-
ever supersonic convection is present. At these conditions all wave numbers will contribute
to the radiation and a wider range of acoustic frequencies might be expected. However, if
the example of § 5 is at all realistic, very high acoustic efficiences will be present at supersonic
speeds with most of the radiation being of the Mach wave type. At these high efficiencies
considerable radiation damping of the turbulence will be expected, and the high wave-
number turbulence being the most efficient radiator will be the first to be affected. Radia-
tion damping will then reduce the wave-number range and hence the radiation frequencies.
This perhaps is the effect noted by Lilley (1958) in Lassiter & Heitkotter’s (1954) work where
peak frequencies in the rocket noise-field were much lower than those generated by subsonic
jets.

It might be postulated that where turbulence frequencies determine the acoustic spec-
trum, the spectra might collapse on a Strouhal number basis, butfor the Mach waveradiation
the spectrum would tend to a function independent of speed.

4. DIMENSIONAL ANALYSIS AND ASYMPTOTIC FORMS

One of the important results in Lighthill’s (1952) theory is the prediction that acoustic
strength increases with the eighth power of velocity. This result, derived from a dimensional
analysis of the equations governing radiation, has provided the basis for co-ordinating
experimental results. A dimensional analysis for the condition of Mach wave radiation is
given below. This could serve a similar purpose in providing a basis for co-ordinating the
peak noise levels in high-speed jets and rocket engines—provided, of course, that the noise
orginates from turbulence.

Another important aspect which can be studied by dimensional reasoning concerns the
value of the acoustic efficiency at high speeds. Lighthill (1952) showed it to increase with
the fifth power of velocity at low speed but his theory took no account of the back-reaction
of sound on its turbulence source. If the efficiency continues its increase, at high speeds the
turbulence structure must be affected considerably and no theory would be complete which
ignored its effect. Phillips’s (1960) work, which showed the efficiency to decrease with
velocity at high speeds, suggests that the acoustic efficiency is always small and that added
refinements accounting for turbulence damping are not called for. His prediction that an
efficiency maximum might be observed at some supersonic velocity is qualitatively con-
firmed by Chobotov & Powell (1957) who give evidence that it approaches a constant in the
speed range 2000 to 5000 ft/s.
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Dimensional reasoning applied to the present theory shows the efficiency to asymptote to
a constant after passing through a maximum, and in this respect differs from Phillips’s result.
This conclusion is based on the assumption that the dimensional form of the stress tensor 7;;
is pU?, p being the mean density and U a typical velocity in the turbulence. The absence of
experimental evidence on this point makes it difficult to be more precise. Lighthill (1954) has
shown that the fluctuating momentum flux, pu; u;, is likely to be the most important term in
the absence of large temperature changes, but to attempt a more refined specification than
pU? at the high Mach numbers would, at present, be a case of pure conjecture.

For an aircraft in flight the flow variables which might affect the sound are: U, the aircraft
forward speed, U, the jet exit velocity relative to the aircraft, p the mean density in the jet
flow, p, the undisturbed density of the surrounding medium, D a typical length scale such
as jet diameter and |y| the distance from the aircraft to the observer at the time sound was
emitted.

The correlation tensor Fj;(n,A,0) is dimensionally similar to p?(U;—U)* and the dif-
ferentiation with respect to time can be done by dividing by a typical time scale, D(U, — U,) !

74 _‘2
Jo :;szkl("la1 ) ~ D4 (U,—Uy)®. (4-1)

An integration over A is represented by multiplying the integrand by a typical volumetric
scale, D3, while an » integration is performed by multiplying this by the mixing region
volume which varies like D3U,/(U,— U,) (Squire & Trouncer 1944).

Inregions away from the singularity at |[x —y| = M. (x—Yy), the equation for the acoustic
intensity can be written in the simplified form:

o1 Y:Yi Yx Yy 9! .
1(0,2) 16ﬂ2p0agff Y I = MeosO]* S Py, 0 = 0)ddyd,  (42)

where retarded-time differences are assumed small compared to the turbulence time scale.
This equation can then be analyzed dimensionally to give the low-speed dependence
which applies to a moving jet,

U,— Uy’ U, D2
I(Ot)Np_O( ao 0) I

This result has been obtained previously (Ffowcs Williams 1960) and is only significantly
different from Lighthill’s form (1954) in that proper account is taken of the fact that eddies
move relative to the moving aircraft.

At high speeds away from the singularities where A/ cosf > 1, we obtain the asymptotic
high-speed form which shows the intensity to increase proportionally to jet power,

|2|1—Mcos€| 5|1+ Ncosg|~L (4-3)

I(O’ t)lMcos0I>l U3IC080[—5|1—}—NCOS¢I L (4'4)

P-

Po I |
The dimensional form at and near the singularity where Mach wave emission is pre-

dominant can be obtained from an analysis of equation (2:16), here stated in the same

simplified notation

1 7
L0, Oascons=1 ~ T2, ] TP N g) a1 Banlns A o) dodigdn. (45)
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The expression (94/0A¢—y,) F;u(n, A, o) 1s likely to be a function of the angle of emission, 4, if
the space scales of the turbulence are not all equal. Since 6 is a function of M for the singular
condition this introduces a further Mach number dependence the effect of which is difficult
to assess in general, but can be seen quite clearly from the example which follows.

Dimensionally the operation of differentiation with respect toA is effected by dividing by
the typical scale D and the integration over time, o, is represented by multiplying the
integrand by a typical time scale D/(U,— U,).

180 -
)
$ =
2 3 |L— .f‘g -
K 160 /'V/ /'/'.'J.t\r
3" _— < rockets
2 ATy v
' L4
S 140 4 S
o /{ ‘ Jet engines
= %2 4
o
£ 120 A
5 ;/ 2
3
8100 A jf/ -
g /] //< ~'model curves

.

2
= 8054
g
© 200 ‘ 500 1000 2000 5000 10000

jet exit velocity (ft./s)

Ficure 5. Variation of acoustic power levels from Chobotov & Powell (1957). ®, Rocket; v, turbo-
jet (afterburning); A, turbojet (military power); M, exit velocity > M = 0-8; O, air model
(exit velocity < M = 0-8). D is the exit diameter in inches.

The dimensional form of the intensity equation at the singularity which reveals the
nature of the Mach wave emission can then be specified
p? D?
!YP
At high jet exit velocities when U, > U, this has a form very similar to the one developed for
quadrupole radiation at very high speeds

I(0, ) s cosp—1 ~ (U,— Uo) U1|1+NCOS¢| L (4-6)

I(O’t)Mcos0=l ‘ [2 U3|1+NCOS¢[ l (4'7)

The total rate of energy supply to the jet exhaust is pU} D? and the ratio of acoustic power
output to the supply of power represents an acoustic efficiency which we shall call 5. By the
above rather crude dimensional reasoning the acoustic efficiency is shown to tend to a
constant value at high speed and the example following will suggest that a maximum value
exists. The asymptotic constant is easily shown to depend only on the density ratio and
aircraft Mach number, (Blpo) f (V). (4-8)

Noyso ~
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The inference that the radiated power asymptotes to a dependence on the velocity cubed
finds some confirmation in the evidence of Chobotov & Powell (1957). Figure 5 is repro-
duced from their report and provides a very crude qualitative confirmation of the predicted
dimensional trend, but in assessing the value of this confirmation it must be remembered
that the dimensional arguments are very crude.

5. A PARTICULAR EXAMPLE

To illustrate the nature of acoustic emission over a wide range of convection velocities an
example is considered where all elements of the correlation tensor are similar in form, i.e.

Pia(n, A, 7) = Ay (n) P, 7). (51)
With this type of correlation function the intensity equation (1-29) reduces to

1 4:4; Y59 Aijra(n) 9 .
16712p0a3ff [¥[6[1+Ncosg| |1 —Mcosf] ar == P(A,7) dA dy, (5-2)

where the simplified notation of § 3 is used and the jet axis lies in the 1 direction in the plane

Y3 = 0.
The effect of eddy convection is now entirely contained in the integral

100, ) ~

f|1~Mcoso9|‘5a—14P(7c,T) da, (5-3)
and its evaluation over a range of Mach numbers, M, will illustrate the augmentation due to
convection.

The correlation function chosen for the example is

P(A,7) = exp—{a} A3+ a3 A+ a3 A3+ F2 M%) (5-4)

This represents a hypothetical but possible form where turbulent scales are constant while
frequency varies directly with velocity.

In the exact integral the retarded time 7 is completely dependent on the separatlon vector,
A, and in this particular situation on the two components A, and A,, parallel and perpendi-
cular to the jet axis respectively,

__Aycosf+A,sinb .
~ ay(1—Mcosf) (5-5)
The retarded-time integral can then be evaluated directly to give
94
Jll — M cos 0|7~ P(A,7) dA
2 M2 cos? ~-§
= 12/*M* {(I—Mcosﬁ) ’6)—]‘—4—299-8-—(2(1%— ‘tanzﬁ)} . (5-6)
a,ay as ai ag

Neglect of the retarded-time differences would yield the approximate low-speed result

1244 M-

]l — M cos §|75. (57)
a4
A comparison of the exact form with the approximate result will show the range over
which the low-speed approximation is valid. In this particular case the approximation is
shown to be good over a wide range of convection velocities as can be seen in figure 7.
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In the more accurate result there appear to be two important ratios of turbulence scales
which determine the main features of the Mach number dependence. The first is the ratio
of time to longitudinal scales defined by

by = pla, ay, (5-8)
and the second the ratio of longitudinal to lateral scales
bz e al/azo (5.9)

In model jets the ratio 4, is found to be approximately £ at subsonic velocities while b, is
near 1. No evidence is available at present on whether or not they may be regarded as
constant throughout the speed range but this will be assumed in the present example.

The condition which Lighthill (1954) gave on the validity of the moving-axes approxi-
mation was that frequencies should be sufficiently low. This condition is shown explicitly by
the important role 4, plays in determining the range over which retarded-time differences
can be neglected.

In terms of these ratios the retarded-time integral is

3
alzzag{(l—Mcos 0)2-+ b3 M2(cos2 0+ b3 sin? 6)}-, (5-10)

1244 M

and retarded-time differences are negligible provided the observer is well away from the
singular regions, i.e.

(1—Mcos0)? >b2 M?*(cos?0+b3sin?0). (5-11)
The result then reduces to precisely the form found by the approximate method, equa-
tion (5-7).

Near the Mach angle however, the integral, (5-6), can be written
1 2/5) M 477'% 2 9 -3
where the ratio 4, plays a most important part in determining the strength of the Mach wave
emission. The asymptotic form for high Mach numbers then reduces to
127t aja}
fMa, ayay’ (5:13)

which shows a dependence on the inverse frequency, (fM)~1, and the fifth power of a typical
wave number in the transverse direction, a3.
The main effect of convection is illustrated by the

{(1—Mcos0)%+b3 M? (cos? 0+ b2sin2 §)}~* (5-14)

factor in (5-10), and this is the total augmentation due to eddy motion. The quadrupole
strength is increasing with the eighth power of velocity in addition to this,

Aijkl("l) ~ U pM*~U*

and these two effects account for the entire velocity dependence.
The augmentation factor, (5:14), is shown in figures 6, 7 and 8 for a range of angular
positions and convection Mach numbers. These figures bear a limited similarity to the

61 VoL. 255. A.
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Ficure 6. Directionality imposed by quadrupole convection at Mach number M.
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illustration given by Ribner (1959). There he evaluated an idealized fixed-axis retarded-time
integral to indicate a convection effect.

Figure 9 represents the predicted intensity variation with Mach numbers for a jet of unit
power where the basic dependence of figure 7 has been augmented by the term U°.
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Ficure 8. Directionality imposed by quadrupole convection at Mach number, M.
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convection Mach number.
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The augmentation of the total power output by convection is shown in figure 10 for the
three types of quadrupoles obtained by axis re-orientation. Figure 11 shows these curves
augmented by the U® term remaining in the dimensional breakdown of the power equation.
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Ficure 10. Augmentation of overall power output by quadrupole convection. ————, Both axes

in jet direction (u;u,;); —A—/A-A—-/\—, both axes inclined perpendicular to jet direction (u,u,);
—X—X—X—X—, one axis parallel, one axis perpendicular to jet direction (,u,).
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Ficure 11. Variation of acoustic efficiency with convection Mach number.
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These curves then show the acoustic efficiency associated with each quadrupole type as it is
convected through the otherwise stationary atmosphere. Although the dimensional analysis
shows the efficiency to rise with U® at low speeds and asymptotes to a constant at high speeds,
the example shows clearly a maximum value in the intermediate speed range.

CONCLUSION

At low speeds the present theory, being based on Lighthill’s classic work, offers very little
that is new apart from the modification needed to account for aircraft motion. Again
acoustic frequencies are identified with those in the turbulence at values modified by the
Doppler factor (1—M cosf). Admittedly a point of doubtful significance at low speeds is
the identification of the acoustic wave number with that of the turbulence which produced it
(see also Kraichnan (1953) and Mawardi (1955)), while it is well known that the radiated
sound is usually at a very low wave number when compared to those typically found in
turbulence. Of course, since the turbulence stress tensor depends on velocity quadratically,
part of the low wave-number components arise from the sum and difference tones of the
velocity fluctuations, i.e. the so-called ‘turbulence-turbulence’ contribution. Then the
velocity fluctuations responsible for the sound generation may be of higher wave number.
For example, in Proudman’s (1952) analysis of isotropic turbulence it is the high wave-
number velocity components which have the highest acoustic efficiency but these give rise
to sound waves of comparatively low wave number. In heavily sheared jet mixing regions
where 02/012T;; can be approximated by 7(dp/d¢), 7 being a large mean shear and p the static
pressure (see Lighthill 1954), there is no difference tone phenomenon and the wave number
of sound is identical to that of p which produced it. It is most important to remember that
the low wave-number spectral component refers not to energy in very large eddies but to an
integral correlation function whose value may be obtained from a relatively small-scale
correlation survey. The need to establish the low wave-number power spectral density in
no way implies that extremely large-scale features of the turbulence must be studied in
detail, a task made difficult by the near vanishing of the statistical correlations. Nor does it
imply that these small correlations at large separations play a significant part in deter-
mining the power level, for they would only become significant if the volume integral were
a near-vanishing quantity and the contributions from the small correlation regions were
a significant fraction of the whole. But in that event a higher-order source system would be
dominant and the analysis could be referred to the more complex sources to state the relevant
equations in terms of a function which could be measured more easily by a localized small-
scale survey.

At high speeds the intensity peaks heralded by the singularities of the approximate theory
are given a finite value and are associated with a Mach wave emission similar in some
respects to the phenomenon studied by Phillips (1960). Crude dimensional reasoning
predicts the intensity of these peaks to vary with velocity cubed as does the limiting high-
speed case of the more classical quadrupole emission. This high-speed velocity dependence
is not the one predicted by Phillips (1960) in rather a different but analogous situation,
although some detailed features show the two theories to bear certain similarities and both
rely on what is essentially the same dimensional argument. The theories do, however, deal

with quite different flow models with one concentrating on a two-dimensional system with
61-3
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a particular distribution of mean velocity and the other on a three-dimensional model
demonstrating the effect of one typical convection velocity. In the absence of experimental
data regarding the high speed form of the turbulence stress tensor, the dimensional argu-
ments have been based on the assumption that 7;; is dimensionally similar to pU2. Although
this may be a fair assumption up to low supersonic speeds it may be quite unacceptable as a
basis for estimating the asymptotically high-speed trends. At very high speeds it is possibly
more revealing, and certainly more correct, to state the results in the form:

1 D2 _ 1

1(07 t)lMcosB|>l ~—s U™l ICOSﬁI i !1 +NCOS¢[ 1T2>
Po |¥]?
1 D2 1
I(O’ t)Mcos¢9=l ~—n U II+NCOS¢| sz:

po |¥?
where the dimensional form of 772 is left unspecified.

The main high-speed effects that the present theory predicts are the dependence of
acoustic intensity on velocity cubed, the pronounced directionality of the acoustic field and
a tendency for the acoustic spectrum at the position of peak emission to include high
frequencies yet be independent of jet velocity. Experimental evidence at supersonic speed
is scarce and difficult to interpret, often being associated with complex flow structures of the
rocket exhaust type. To seek a detailed comparison of theoretical prediction with experi-
mental observation in the absence of a reliable model of the mixing flow would be futile but
more general features can be used in a qualitative manner with considerable success.

The extremely directional field radiated at cos# = M~! has been observed in the noise of
high-speed jets and in the radiation from supersonic turbulent boundary layers (Williams
& Stevenson 1957; Laufer 1961). A shadowgraph picture taken by Ricketson is repro-
duced in figure 12, plate 5. This shows quite clearly the pronounced directionality of waves
attached to eddies which evidently move at half the jet exit velocity. Figure 16 of the
Bakerian lecture (Lighthill 1961) shows the same phenomenon, but associated with larger-
scale features of the flow; again the waves are generated by eddies moving close to half the
jet exit speed. That this highly directional field is present in the radiation from turbulent
boundary layers is now well established. Particularly good shadowgraph pictures, figure 13,
plate 6, are given by James (1958) (reproduced here by kind permission of the N.A.S.A.—
Ames Research Centre where they were obtained) and the detailed study of the velocity
perturbations in a supersonic wind tunnel conducted by Laufer (1961) established the
existence of a highly directional wave field and gave for the first time a direct measure of
the Mach wave strength. The intensity of this emission Laufer finds proportional to M*, but
the influence of the boundary is not at all clear. The eddy velocity is close to the average
shear layer mean velocity while the wall pressure pattern is known to move with a speed
nearly half as much again (Kistler & Laufer 1960). If the waves were generated by wall
pressure stresses they would appear attached to eddies moving with this higher convection
velocity.

A dimensional reasoning of the type conducted in this paper, if applied to the radiation
field of wall pressure stresses at the Mach wave condition, would predict the intensity to
increase with the sixth power of Mach number. The measured M* dependence found by
Laufer (1961) together with an evident source speed considerably different to that of the
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Ficure 12. Shadowgraph pictures illustrating Mach wave radiation generated by the exhaust of
high-speed jets. (Crown copyright is reserved and this photograph is published by permission
of Her Majesty’s Stationery Office.)
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Ficure 13, Shadowgraph pictures illustrating Mach wave radiation generated by a supersonic
turbulent boundary layer. (N.A.S.A. Ames Research Center.)
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wall pressure structure strongly implies the relative insignificance of the noise it generates,
at least at supersonic speeds. On the other hand, the same analysis applied to the sound
produced by fluctuating wall shear stresses predicts the intensity to vary with A*, the
experimentally observed result. It requires a more detailed study of the boundary-layer
radiation to establish its real source, for Af* is also in encouraging agreement with the
present theory which predicts M® without accounting for effects of varying scale in the
direction of emission. As Mach number increases the Mach angle increases and the scale
changes considerably—becoming smaller with increasing angle, so augmenting the radiation
strength above the theoretical M3 law.

Studies of acoustic fields generated by high-velocity turbulent jets reveal the complicated
nature of the jet noise problem at high supersonic speeds. It would indeed be remarkable if
the rapidly varying turbulent structure of a flow where the velocity changes so quickly in the
presence of strong shock waves did not produce a complex noise field. Even in this situation
some general aspects of the problem are seen to be in accordance with trends predicted by
theory. The one large unknown in this respect is the location of the main noise-producing
region and its associated convection velocity, if indeed any one convection velocity exists.
The literature contains a number of reports where the most intense source of rocket noise is
located a considerable distance downstream of the nozzle in a region of relatively slowly
moving flow. The high-speed region near the nozzle evidently radiates with considerably
lower efficiency. But these source locations have been estimated either by observations
based on the directional maxima of the radiation field, a notoriously inaccurate process in
complicated multipole systems, or by studies of the near-field pressure along the mixing flow
boundary. This latter method is also likely to give a very misleading acoustic-source location
in rocket exhausts where wide ranges of convection velocities are encountered. The reason
is intimately connected with the order of the acoustic source and the fundamental change
brought about by the simple-source-like emission of quadrupoles convected at sonic speed.
Quadrupoles generally induce a powerful and highly localized ‘near’ field not present in
simple-source emission. Measurements of pressure near a rocket exit would then be subject
to this intense quadrupole ‘near’ field in the low-speed regions but only to the radiated field
close to the supersonic flow where sonically-convected quadrupoles had degenerated into a
simple-source system. The variation of pressure observed near the mixing flow of supersonic
jets is very likely caused in part by this effect and it may be quite misleading to regard the
‘near’ field strength as an indication of the proximity of powerful acoustic sources.

While source locations remain in doubt the problem of understanding rocket noise fields
is not so much one of alining a high-speed theory with the experimental results as one of
establishing whether or not the rocket noise field is in the main generated by the high- or
low-speed regions of the mixing flow. There is no doubt that for rockets acoustic power
increases with velocity cubed, frequency spectra cease to be Strouhal number dependent
and that the direction of peak emission moves towards the normal to the jet axis with
increasing velocity (Cole, von Gierke, Kyrazis, Eldred & Humphrey 1957; Mayes, Lanford
& Hubbard 1959; Lassiter & Heitkotter 1954), all effects entirely consistent with a super-
sonically-convected turbulent source region. But generally the degree of these effects are
difficult to aline with any simple model of a supersonically-convected source structure.
If rocket noise were mostly of the Mach wave type it would be extremely directional with a
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spectrum independent of jet velocity but at generally higher frequencies than those present
in subsonic jets. Lassiter & Heitkotter (1954) found relatively low frequencies in their
rockets and although the noise field was very directional it was not as directional as the
example of § 5, if indeed this is at all realistic, would predict. Eldred (1956), Cole ¢t al. (1957),
Mayes et al. (1959) all show that for rocket noise a Strouhal number based on jet velocity is
no longer useful in normalizing acoustic spectra and they use a Strouhal number based on
the relatively slowly-changing velocity of sound at the nozzle exit. A possible explanation for
this apparently poor correlation is that acoustic efficiency has reached such a high value at
high speeds that turbulence levels are damped by the heavy energy demand of the radiation
field. This however is a most unlikely explanation since experimental observation shows that
jetand rocket motors rarely exceed an acoustic efficiency greater than § 9, (Mayesetal. 1959).
Thisis brought home very vividly when one considers that at subsonic speeds approxi-
mately 80 %, of the jet kinetic energy is dissipated in the region thought to contain the noise-
producing eddies (see Corrsin 1946; Lilley 1958) and a similar situation very likely exists at
higher speeds. Most of this energy passes through the turbulence phase and would be
available for sound generation were the mechanism of energy conversion of high efficiency.
Evenso, since only a very small fraction of the turbulence spectrum, H;,,(n, K, w), is capable of
exciting acoustic waves, high-efficiency radiation could reduce significantly the energy in
that region yet have a negligible effect on the overall turbulence level. This could account
for some features of the sound field which imply acoustic damping is active, such as de-
partures from the basic U8 law at = 90° and the reduced spectrum range of rocket noise,
yet be consistent with the observation that the radiated energy is a negligible fraction of the
energy dissipated in the sound-producing region.

But a further argument that acoustic damping is not an active mechanism can be based
on the few results which show the strongest resemblance to the predicted high-speed
radiation field. Cole et al. (1957) report an experiment where a flame inhibitor was added to
the rocket exhaust which prevented burning of excess fuel in the supersonic shear region.
The noise field of this test is exceedingly directional and the spectrum contains a considerably
augmented high-frequency power. In fact this noise field provides the best qualitative
agreement with high-speed theory available so far, yet addition of the flame inhibitor
increased the noise level by a factor of four! The reason for the relative lack of high-speed
features in most rocket results must be, not that those features only occur in a radiation
field making an impossibly high-energy demand on the turbulence, but that the
burning of excess fuel in the exhaust modifies the turbulence structure to such a degree that
the sources become most inefficient. This test also serves as an indication of the predomi-
nance of the fluctuating Reynolds stress in the source strength density. Burning of excess
fuel in the mixing-region would cause large temperature inhomogeneities, but these effects
are quite negligible since burning seems to reduce noise rather than increase it. The other
example of a high-speed jet flow devoid of combustion in the wake is the high-power turbojet
engine. Evidentlyt its noise field exhibits a frequency spectrum quite independent of
exhaust velocity at the condition where intensity assumes a dependence on velocity cubed.
This is again fully in accordance with a noise field produced by a supersonic source
region.

1 Private communication with Mr G. M. Coles of Rolls Royce Ltd.
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But before we treat this evidence as confirmation of the high-speed theory we must first
ask whether or not these effects can be accounted for if the subsonic regions were mainly re-
sponsible for the noise ? One might postulate that then the noise field would be closely similar
to that of a jet with sonic exit velocity but with a scale sufficiently large to accommodate
the increased mass flow. The area of the sonic section would have to vary with the square of
jetvelocity and so cause the noise level, directly proportional to area, to increase with velocity
squared at high speed. Frequencies radiated by such a system would vary inversely with
scale and hence inversely with jet velocity while the directionality would be that of a
subsonic jet. Experimental evidence does not support a model of this type although only a
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Ficure 14. Comparison of measured directionality with a theoretical model.
o, Lassiter & Heitkotter (1954); solid fuel rocket exit velocity 5340 ft./s.

relatively small proportion of noise arising from a supersonic region is necessary to account
for the measured directionality. On the basis that acoustic sources in the supersonic region
are convected at one velocity and those in the subsonic region with half the speed of sound
~one could combine two directional characteristics corresponding to the two eddy speeds to
simulate the choked jet case. This is done in figure 14 and compared with the measurements
obtained by Lassiter & Heitkotter (1954) with a solid fuel rocket motor. The relative con-
tributions from the supersonic and subsonic sections has to be estimated, but if the ratio is
1:32 and the supersonic convection takes place at M = 1-5 the comparison with the mea-
surements is remarkably good. Here the example of § 5 has been employed and the ratio of
lateral to longitudinal quadrupoles is that suggested for low-speed jets by Lilley (1958). Itis
highly probable that this agreement is purely fortuitous since it is very difficult to explain
why only 3 %, of the noise is generated by the supersonic region yet the intensity is known to
be increasing with velocity cubed while the frequency spectrum is changing only very
slowly. Only sound emitted by the high-speed flow varies in this manner, and for the overall
noise to exhibit these properties implies very strongly that it is mostly generated in the
supersonic region.

One final rocket experiment which is interesting in that it implies the relative insigni-
ficance of strong shock waves in the mixing flow is reported by Mull & Erickson (1957).
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Ffowcs Williams & Ricketson (1963) in discussing this work remark that ‘using a constant
chamber pressure and nozzle area they find the total acoustic power from anisentropic nozzle,
a 15° half angle conical nozzle and a convergent nozzle was 99 watts, 78 watts and 26 watts
respectively. It would be expected that the isentropic nozzle having only weak shocks in the
flow would have the longest supersonic core while the convergent nozzle having large normal
shockswould have theshortest.’ Coulditbe that the noise is mostly generated in the supersonic
core and that the only significant part played by strong shock waves is to reduce the volume
containing powerful acoustic sources? This and many other questions must for the present
remain unanswered. With more detailed experiments our knowledge of the mixing region
and its acoustic sources will increase, making quantitative checks of the theory possible, but
it would be quite misleading at this stage to be emphatic on apparent agreement of experi-
ment and theory. That some features observed experimentally are in clear agreement with
theory provides some encouragement that the techniques developed by Lighthill (1952,
1954) which have been so successful at low speeds can be extended to form a theoretical basis
for rocket-noise studies.

The work described above has been carried out as part of a research programme at the
Aerodynamics Division of the National Physical Laboratory, and this paper is published by
permission of the Director of the Laboratory.

The author is grateful for the assistance gained from discussions with J. T. Stuart, G. M.
Lilley, B. W. A. Ricketson and particularly M. J. Lighthill, F.R.S., who made many
helpful comments on the understanding and presentation of some of the more subtle
aspects of the theory. His thanks are also due to Professor E. J. Richards who first aroused
the author’s interest in the aerodynamic noise problem.
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‘IGURE 12. Shadowgraph pictures illustrating Mach wave radiation generated by the exhaust of
high-speed jets. (Crown copyright is reserved and this photograph is published by permission
of Her Majesty’s Stationery Office.)
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Ficure 13. Shadowgraph pictures illustrating Mach wave radiation generated by a supersonic
turbulent boundary layer. (N.A.S.A. Ames Research Center.)
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